If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10^2+b^2=24^2
We move all terms to the left:
10^2+b^2-(24^2)=0
We add all the numbers together, and all the variables
b^2-476=0
a = 1; b = 0; c = -476;
Δ = b2-4ac
Δ = 02-4·1·(-476)
Δ = 1904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1904}=\sqrt{16*119}=\sqrt{16}*\sqrt{119}=4\sqrt{119}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{119}}{2*1}=\frac{0-4\sqrt{119}}{2} =-\frac{4\sqrt{119}}{2} =-2\sqrt{119} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{119}}{2*1}=\frac{0+4\sqrt{119}}{2} =\frac{4\sqrt{119}}{2} =2\sqrt{119} $
| 8x+7+14x-11+5x+18+10x+13=360 | | 8x5=27 | | 11/7+1/2t=4 | | 8x+7+14x-11+5x+18+10x=13 | | 8+4w=48 | | 15x-84x-36=0 | | 2x-9√(x)+4=0 | | v^-6v+5=0 | | Y=-16x^2+32x+1584 | | w/2−1=1 | | 9x-28=x+80 | | -5(1-2x)-5x+2=2-3x | | v+8=8+13v | | X^2=12x-2 | | 3x+2-5x+9=27 | | 12=10-9x | | -5(p=2)=2(2p-15)+p | | 104+(7x+62)=180 | | 26-2(2w+1)=8w-2(8+w | | -6w+4=34 | | -5(p+20)=2(2p-15)+p | | 4x-12+3x=2+7x-13 | | g/9=-7 | | 11^(x-7)=5 | | -x+4=-2(x-3) | | |t|+1.1=6.6 | | 11^x-7=5 | | 12−3v=6 | | 108+(8x-72)=180 | | -1k/4=1 | | 4x-17=-2x-5 | | 1/3x+11=16 |